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Local regression models provide methods for 2tting regression functions3 or re+

gression surfaces3 to measurements of two or more variables7 One variable is a
response3 the others are factors3 and a function is 2tted to the data to explain how
the response depends on the factors7 Two examples are shown in Figures < and =
In the 2rst 2gure3 E is the factor3 NOx is the response3 and the 2tted function is
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Figure <@ Local regression model with one factorA2tted curve7
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shown by the curve- In the second 0gure2 east4west and south4north are the factors2
velocity is the response2 and the 0tted surface is shown by a contour plot- These
two examples will be explained in detail later-

This handbook describes a collection of public4domain programs2 written in C
and Fortran2 that carry out such function 0tting using loess2 a method based on local
regression- The appendix at the end of this document describes how the programs
may be obtained electronically- Most users will want to use the code by writing C
programs that access the high4level C routines of loess- This handbook shows how
to do that-

Consider any point x in the space of the factors- One basic speci0cation in a
local regression model is that there is a neighborhood containing x in which the
regression surface is well approximated by a function from a speci0c parametric
classA for the loess implementation described in this handbook2 there will be two
classesBpolynomials of degree C or D- The loess method method consists of 0t4
ting polynomials locally2 in a moving fashion2 and thus amounts to smoothing the
response as a function of the factors-

The handbook instructs by doing- Data are analyzed using the codeA results
of the analyses as well as the code that produces them are described- This shows
both how loess works and how the code works- Some of the analysis is graphical2
but no graphics code is provided- Users are on their own to interface this code
with a graphics packageA such tools are essential for assessing and interpreting the
functions that are 0tted-

 Statistical Models and Fitting

 ! De$nition of Local Regression Models

Suppose2 for each i from C to n2 that yi is a measurement of the response and xi

is a corresponding vector of measurements of p factors- In a regression model the
response and factors are related by

yi I gJxiK L &i'

where g is the regression surface and the &i are random errors- If x is any point in
the space of the factors2 gJxK is the value of the surface at xA for example2 gJxiK is the
expected value of yi- In the 0tting of local regression models we specify properties
of the regression surface and the errorsA that is2 we make assumptions about them-
We will now discuss the speci0cations that are allowable using the C routines and
data structures that are described in Section D-

Speci$cation of the Errors

In all cases2 we suppose that the &i are independent random variables with mean
N- One of two families of probability distributions can be speci0ed- The 0rst is
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the Gaussian) The second is symmetric distributions2 which allow for the common
situation where the errors have a distribution with tails that are stretched out
compared with the normal 8leptokurtosis:2 and which lead us to robust methods of
estimation)

We can specify properties of the variances of the  i in one of two ways) The
<rst is simply that they are a constant2 ! ) The second is that ai i has constant
variance ! 2 where the a priori weights2 ai2 are positive and known)

Speci%cation of the Surface

For each x in the space of the factors2 we suppose that in a certain neighborhood
of x2 the regression surface is well approximated by a function from a parametric
class) The overall sizes of the neighborhoods are speci<ed by a parameter2 $2 that
is de<ned in Section B)C) Size2 of course2 implies a metric2 and we will use Euclidean
distance) For two or more factors2 the shapes of the neighborhoods are speci<ed by
deciding whether to normalize the scales of the factors) We will elaborate on this
later)

We will allow the speci<cation of one of two general classes of parametric funcE
tionsF linear and quadratic polynomials) For example2 suppose there are two factors2
u and v) If we specify linear2 the class consists of three monomialsF a constant2 u2
and v) If we specify quadratic2 the class is made up of <ve monomialsF a constant2
u2 v2 uv2 u 2 and v ) We will let ' be a parameter that describes the speci<cationI
if ' J B2 the speci<cation is linear2 and if ' J C2 the speci<cation is quadratic)

Suppose ' J C and there are two or more factors) We can specify that any of
the monomials that is a square be dropped from the class) For example2 suppose
again that the factors are u and v) If we drop the square for u2 then the class has
four monomialsF a constant2 u2 v2 uv2 and v )

If there are two or more factors we can specify that the surface be conditionally

parametric in any proper subset of the factorsI this means that given the values of
the factors not in the subset2 the surface is a member of a parametric class as a
function of the subset) If we change the conditioning2 or given values2 the surface
is still a function in the same class2 although the parameters might change) For
example2 suppose the factors are u and v) Suppose ' J B2 and we specify the
surface to be conditionally parametric in u) Then given v2 the surface is linear in uI
this means the general form of the surface is (!8v:K("8v:u) Suppose ' J C2 and we
specify the surface to be conditionally parametric in u) Then given v2 the surface is
quadratic in uI the general form of the surface in this case is (!8v:K("8v:uK( 8v:u )
It makes sense to specify a regression surface to be conditionally parametric in one
or more variables if exploration of the data or a priori information suggests that
the surface is globally a very smooth function of the variables) Making such a
speci<cation when it is valid can result in a more parsimonious description of the
surface)
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Summary of the Choices

Thus$ the 'tting of local regression models involves making the following choices
about the speci'cation of properties of the errors and the regression surface8

 Gaussian or symmetric distribution;
 constant variance or a priori weights;
 locally linear or locally quadratic in the factors;
 neighborhood size;
 normalization of the scales;
 dropping squares;
 conditionally parametric subset>

/01 Loess3 Fitting Local Regression Models

The method we will use to 't local regression models is called loess$ which is short
for local regression$ and was chosen as the name since a loess is a deposit of 'ne
clay or silt along a river valley$ and thus is a surface of sorts> The word comes from
the German l*oss$ and is pronounced l+o,is>

Identically Distributed> Gaussian Errors3 One Numeric Factor

Let@s begin with the classical case of Gaussian errors with constant variance   >
Suppose there is just one factor> Let x be any value along the scale of measurement
of the variable> The loess 'tting procedure is a numerical algorithm that prescribes
how CgDxE$ the estimate of g at a speci'c value of x$ is computed>

Let FiDxE G jx" xij$ let F!i"DxE be the values of these distances ordered from
smallest to largest$ and let

T Du; tE G

 
DH" Du&tE#E#' for I # u ( t
I for u $ t

be the tricube weight function>
The smoothness of the loess 't depends on the speci'cation of the neighborhood

parameter$ ) * I> As ) increases$ Cg becomes smoother> Suppose ) # H> Let q be
equal to )n truncated to an integer> We de'ne a weight for Dxi' yiE by

wiDxE G T DFiDxE;F!q"DxEE/

For ) * H$ the wiDxE are de'ned in the same manner$ but F!q"DxE is replaced by
F!n"DxE)> The wiDxE$ which we will call the neighborhood weights$ decrease or stay
constant as xi increases in distance from x>
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If we have speci+ed the surface to be locally well approximated by a linear
polynomial7that is8 if  is 97then a linear polynomial is +tted to yi using weighted
least squares with the weights wi<x=> the value of this +tted polynomial at x is ?g<x=@
If  is A8 a quadratic is +tted@ Note that as % !8 ?g<x= tends to a linear surface
for locally linear +tting or a quadratic surface for locally quadratic +tting@

Identically Distributed/ Gaussian Errors3 Two or More Nu8
meric Factors

We continue to suppose the errors are identically distributed and Gaussian@ The
one additional issue that needs to be addressed for p factors with p ' 9 is the
notion of distance in the space of the factors@ Suppose x is a value in the space@ To
de+ne neighborhood weights we need to de+ne the distance8 Gi<x=8 from x to xi8
the ith observation of the factors@ We will use Euclidean distance8 but the xi do
not have to be the raw measurements@ Typically8 it makes sense to take xi to be
the raw measurements normalized in some way@ We will normalize the factors by
dividing them by their 9KL trimmed sample standard deviation8 and call this the
standard normalization@ There are8 however8 situations where we might choose not
to normalize7for example8 if the factors represent position in space@

Armed with the Gi<x=8 the loess +tting method for p ' 9 is just an obvious
generalization of the oneOfactor method@ For % ) 98 neighborhood weights8 wi<x=8
are de+ned using the same formulas used for one factor> thus8 if  Q 98 we +t a
linear polynomial in the factors using weighted least squares8 or8 if  Q A8 we +t
a quadratic@ For % ' 98 the wi<x= are de+ned by the same formula except that
G q!<x= is replaced by G n!<x=%

"#p@

Dropping Squares and Conditionally Parametric Fitting for
Two or More Factors

Suppose  has been speci+ed to be A@ Suppose8 in addition8 that we have speci+ed
the squares of certain factors to be dropped@ Then those monomials are not used
in the local +tting@

Suppose a proper subset of the factors has been speci+ed to be conditionally
parametric@ Then we simply ignore these factors in computing the Euclidean disO
tances that are used in the de+nition of the neighborhood weights8 wi<x=@ It is an
easy exercise to show that this results in a conditionally parametric +t@

Symmetric Errors and Robust Fitting

Suppose the *i have been speci+ed to have a symmetric distribution@ Then we
modify the loess +tting procedures to produce a robust estimate> the estimate is
not adversely aRected if the errors have a longOtailed distribution8 but it has high
eSciency in the Gaussian case@
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The loess robust estimate begins with the Gaussian1error estimate2 3g4x56 Then
the residuals

3"i 8 yi  3g4xi5

are computed6 Let

B4u< b5 8

 
4= 4u'b5 5 for ? ! juj ( b
? for juj # b

be the bisquare weight function6 Let

m 8 median4j 3"i j5

be the median absolute residual6 The robustness weights are

ri 8 B43"i< @m5+

An updated estimate2 3g4x52 is computed using the local Btting method2 but with
the neighborhood weights2 wi4x52 replaced by riwi4x5< thus2 points 4xi- yi5 with
large residuals receive reduced weight6 Then new residuals are computed and the
procedure is repeated6 The Bnal robust estimate is the result of updating the initial
estimate several times6

Errors with Unequal Scales

Suppose we specify that ai"i have constant variance / 6 Then2 for the Gaussian1
error estimate2 the neighborhood weight2 wi4x52 is replaced by aiwi4x52 and for the
robust estimate2 the weight riwi4x5 is replaced by airiwi4x56

 C Functions

This section describes the C functions for local regression modeling6 In each subsec1
tion we analyze a dataset2 illustrating how the C functions are used to Bt models6
We also use graphics to explore the data and carry out graphical diagnostics to check
the speciBcations of the Btted models6 Our goal is to show how the data are ana1
lyzed in practice using the C routines and graphics2 and how each dataset presents a
diMerent challenge6 We begin2 however2 by rapidly running through the C functions
for Btting and inference to give an overview< the reader need not understand details
at this point6

The basic modeling function is loess$%6 LetNs apply it to some madeup data
consisting of =?? observations of three variables2 one response and two factors6 We
will Bt a Gaussian model with the smoothing parameter2 02 equal to ?6P and the
degree2 12 of the locally1Btted polynomial equal to =Q

R



 include (stdio,h.

 include /loess,h/

struct loess1struct madeup5

long n 7 899: p 7 ;5

double one1two>? 7 f@9,ABCBD8: @;,D9ABB: @9,EAEB88: ,,,g5
double response>? 7 f8F,FBGE: E,E;;DG: 8G,EC8F: ,,,g5

mainHI f
loess1setupHone1two: response: n: p: JmadeupI5

madeup,model,span 7 9,B5

loessHJmadeupI5

loess1summaryHJmadeupI5

g

Compiling( linking with the loess library( and executing gives us the output8

Number of Observations/ 011

Equivalent Number of Parameters/ 0678

Residual Standard Error/ 178<8=

The equivalent number of parameters(  ( measures the amount of smoothing( as
de;ned in Section =>?( and is analogous to the number of parameters in a parametric
;t> Also shown is an estimate of !( the standard error of the residuals>

Notice that one two>?( the vector of the two predictors is of length Hn L pI> One
can think of it as a concatenated vector of all the predictor vectors( in which the
jCth coordinate of the iCth point is in one two>iMnLj?( where D  j $ p( D  i $ n>
We will adhere to this rule of de;ning the input data structure for both loessHI

and predictHI in all the subsequent examples Gplease see the onCline documentation
;le( struct,m( for further detail on the input data structureH>

LetJs modify the ;t by dropping the square of the ;rst factor( making it condiC
tionally parametric( and increase ' to D>K8

struct loess1struct madeup1new5

loess1setupHone1two: response: n: p: Jmadeup1newI5

madeup1new,model,span 7 9,D5

madeup1new,model,drop1square>9? 7 TRUE5

madeup1new,model,parametric>9? 7 TRUE5

loessHJmadeup1newI5

loess1summaryHJmadeup1newI5

Number of Observations/ 011

Equivalent Number of Parameters/ <78

Residual Standard Error/ 076>16

The purpose of splitting the invocation into two function calls is now clear> The role
of loess setupHI is to look at the input data and set a host of internal parameters and
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options to default values- The analyst assigns to various 3elds of the loess struct

object to override the defaults as desired7 then calls loess() to perform the main
calculation- Until now we have been 3tting Gaussian models because the argument
that controls this7 madeup new0model0family7 defaults to 4gaussian4- Now let us 3t
a model with the error distribution speci3ed to be symmetric=

madeup6new0model0family 7 4symmetric48

loess(9madeup6new)8

loess6summary(9madeup6new)8

Number of Observations/ 011

Equivalent Number of Parameters/ 678

Residual Scale Estimate/ 071=6=

Also7 we have been using the standard normalization to normalize the scales of the
two factors@ this is controlled by the argument madeup new0model0normalize7 whose
value in the above models has been ;- LetBs now remove the normalization=

madeup6new0model0normalize 7 FALSE8

We do not need to see the output this time-
The function predict() can be used to evaluate a 3tted surface at a set of points

in the space of the factors= For the madeup data7 the range of the 3rst factor is
EF-GHIJKI to L-KJMHHH and the range of the second factor is EM-GGJMLI to M-GJIFKN-
Let us evaluate the current surface at the following values of the two factors= OEF-J7
HP7 OH7HP7 and OF-J7HP-

struct pred6struct madeup6pred8

double newdata;BC 7 fDE0FG HG E0FG H0G H0G H0g8
long m 7 IG se6fit 7 FALSE8

predict(newdata;G mG 9madeupG 9madeup6predG se6fit)8

printf(4Jg Jg JgKn4G madeup6pred0fitBHCG

madeup6pred0fitB;CG madeup6pred0fitBEC)8

=70>6?= 0@7@8A6 0@7=>@0

The function predict() can also be used to compute information about standard
errors7 by setting its se input argument to TRUE-We will evaluate the standard errors
at the following two values of the factors= OEH-J7 HP and OH-J7 HP-

double newdataEBC 7 fDH0FG H0FG H0G H0g8

m 7 E8

se6fit 7 TRUE8

predict(newdataEG mG 9madeupG 9madeup6predG se6fit)8

printf(4Jg JgKn4G madeup6pred0fitBHCG madeup6pred0fitB;C)8

printf(4Jg JgKn4G madeup6pred0se6fitBHCG madeup6pred0se6fitB;C)8
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printf&'(g*n'+ madeup1pred2residual1scale67

printf&'(g*n'+ madeup1pred2df67

 !"!# $  !"%$#&

'"(&)&!) '"(&$''#

'"#)#%'(

$ "(% $#

The components are fit, the evaluated surface2 residual scale, the estimate of
the residual scale2 df, the degrees of freedom of the t distribution upon which the
con7dence intervals are based2 and se fit, estimates of the standard errors of the
7t8 Now we can use pointwise&6 to compute upper and lower con7dence intervals:

struct ci1struct madeup1ci7

double coverage < 2==7

int i7

pointwise&>madeup1pred+ m+ coverage+ >madeup1ci67

for&i < ?7 i @ m7 iAA6

printf&'(g '+ madeup1ci2upperBiC67

printf&'*n'67

for&i < ?7 i @ m7 iAA6

printf&'(g '+ madeup1ci2fitBiC67

printf&'*n'67

for&i < ?7 i @ m7 iAA6

printf&'(g '+ madeup1ci2lowerBiC67

printf&'*n'67

 *"(( $  *" (%'

 !"!# $  !"%$#&

 %"&) $  %")*)!

The computations of predict&6 that produce the standard errors are much more
costly than those that evaluate the surface, so the number of points at which stan<
dard errors are computed should be modest compared to those at which we do
evaluations2 this is not a limitation for the practice of local regression modeling
since it makes statistical and graphical sense to compute intervals at a limited set
of points8

In our 7rst 7t to the made<up data we took span to be ?@A8 Can we increase it
and still get a good 7tC The best way to check is to use graphical diagnostics, but
the analysis of variance can also provide some guidance:

struct loess1struct madeupD7

struct anova1struct madeup1anova7

loess1setup&one1two+ response+ n+ p+ >madeupD67

madeupD2model2span < ?2EF7

loess&>madeupD67

?D



anova$%madeup+, %madeup, %madeup-anova./

printf$45g 5g 5g 5g7n4, madeup-anova8dfn, madeup-anova8dfd,

madeup-anova8F-value, madeup-anova8Pr-F./

 !"#$%" &'!(%') (!&#)%% $!$'('"")

The results suggest that the increase in span has led to a distortion/

 !" Gas Data

Our 1rst data set is the gas data2 33 observations of two variables from an in9
dustrial experiment that studied exhaust from an experimental one9cylinder engine
=Brinkman2 @AB@C/ The dependent variable2 which will be denoted by NOx2 is the
concentration of nitric oxide2 NO2 plus the concentration of nitrogen dioxide2 NO!2
normalized by the amount of work of the engine/ The units are  g of NOx per joule/
The factor is the equivalence ratio2 E2 at which the engine was run/ E is a measure
of the richness of the air and fuel mixture/

Data Exploration

We begin our analysis with an exploration of the data by the scatterplot of NOx

against E in Figure J/ The plot shows that there is substantial curvature as a
function of E and that the errors have a small variance compared with the change
in the level of NOx/

Fitting a First Model

Because of the substantial curvature in the overall pattern of the data2 we will 1t a
local regression model using locally quadratic 1tting/ A reasonable starting point
for the smoothing parameter is # L 3$J/ Also2 because variation about the overall
pattern shows no unusual behavior2 we begin with the hope that an assumption of
Gaussian errors is reasonableN

struct loess-struct gas/

double E@A B fC8DEF, F8CGH, F8C+F, 888g,
NOx@A B fG8DFD, +8DGL, E8+MH, 888g/

long n B ++, p B F/

loess-setup$E, NOx, n, p, %gas./

gas8model8span B +8C N E8C/

loess$%gas./

loess-summary$%gas./

Number of Observations9 ((

Equivalent Number of Parameters9 #!#

Residual Standard Error9 $!%"$"
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Figure &' Gas data-NOx against E1

The equivalent number of parameters of the <t is =1=1 The estimate of the residual
variance is ?1&@?@A but we should not take this estimate seriously before carrying
out the diagnostic procedures to come1

Evaluation and Plotting the Curve

Having <tted a model to gasA we will compute FgGxH at the following values of the
factorA E' ?1II= ?1J@J K1LL@1 These areA respectivelyA the minimummeasurement of
EA the medianA and the maximum1

struct pred*struct gas*pred+

double gas*fit*E23 4 f567789 56:;:9 <6==;g+
long m 4 @9 se*fit 4 FALSE+

int i+

predictEgas*fit*E9 m9 Fgas9 Fgas*pred9 se*fitG+

forEi 4 5+ i H m+ iIIG

printfEJKg J9 gas*pred6fit2i3G+

printfEJLnJG+

KL



 ! "#$ %!&#'(% &!%)*#')

We could compute the +tted values/ 0yi 1 0g2xi3/ by6

predict'E) **) +gas) +gas/pred) se/fit12

However they/ as well as the residuals/ yi  0yi/ are stored on the loess output sub<
structure/ gas3out=

gas3out3fitted/values

gas3out3fitted/residuals

To study the +tted curve we can evaluate it at ?@ equally spaced points from
the minimum of E to the maximum and plot it= The result is shown in Figure G=
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Figure G6 Gas dataIlocal regression +t=

Diagnostic Checking

We turn now to diagnostic checking to accept or reject the speci+cations of the
model we have +tted= To check the properties of g2x3 that are speci+ed by the
choice of # 1 L$M and % 1 L/ we plot the residuals/ 0&i/ against E to look for lack
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Figure &' Residuals against E with a scatterplot smoothing67rst 7t to the gas
data8

of 7t' The result is shown in Figure &8 No e<ect appears to be present in the
diagnostic plot> so  ? @!A appears to have introduced no lack of 7t8 But is there
surplus of 7t> that is> can we get away with a larger  F To check this> we 7t a new
loess model with  ? G'

struct loess(struct gas(null,

loess(setup.E0 NOx0 n0 p0 4gas(null5,

gas(null6model6span 9 :,

loess.4gas(null5,

loess(summary.4gas(null5,

Number of Observations/ 00

Equivalent Number of Parameters/ 567

Residual Standard Error/ ;67<=>

The residual plot is shown in Figure H8 There is a strong signal in the residuals6a
dependence of the level of the I"i on E> so  ? G is too large> which suggests that
 ? @!A is about as large as we can get away with8 Thus> we have veri7ed our
speci7cation of the form of gJxK since there appears to be no surplus or lack of 7t8

GL



E

R
e
s
id

u
a
ls

 (
g
a
s
_

n
u
ll)

0.7 0.8 0.9 1.0 1.1 1.2

-1
.0

-0
.5

0
.0

0
.5

Figure &' Residuals against E with a scatterplot smoothing6second 7t to the gas
data8

Next; we check the distributional speci7cations for the error terms8 To see if
the scale of the residuals depends on the level of the surface; we plot

p
jA ij against

the 7tted values; Ayi8 Taking the square root tends to symmetrize the distribution
of the absolute residuals8 For our current example; with its small sample size of EE;
we would not expect this method to reliably detect anything but a radical change
in scale; but for illustrative purposes we show the plot in Figure F' The graph
does not show any convincing dependence8 To check for dependence of the scale
on E; a similar graph was made6but against E instead of the 7tted values6and;
again; no convincing dependence was found8 To check the assumption of a Gaussian
distribution of the errors; we will make a Gaussian probability plot of the residuals8
In order to judge the straightness of the points on such plots; we will draw a line
through the lower and upper quartiles8 The result; shown in Figure J; suggests that
the Gaussian speci7cation is justi7ed8

Inference

gas has passed the diagnostic tests; which allows us to carry out statistical inferences
with an assurance of validity8 First; we compute KKL pointwise con7dence intervals
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Fitted values (gas)
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Figure &' Square+root absolute residuals against 3tted values with a scatterplot
smoothing:

for g<x= at seven values of E ranging from minimum value of E to the maximum in
equal steps' @:AABC @:&BDEA&C @:DBEFFFC @:GHHBC E:@F&A&C E:EF@DFC and E:IIH@@:

struct ci&struct gas&ci)

double newdata12 3 f456678 4597:;698 45:7;<<<8 45=>>78

;54<9698 ;5;<4:<8 ;5??>g8
coverage 3 5==)

long m 3 98 se&fit 3 TRUE)

int i)

predictHnewdata8 m8 Igas8 Igas&pred8 se&fitJ)

pointwiseHIgas&pred8 m8 coverage8 Igas&ciJ)

forHi 3 4) i K m) iLLJ

printfHMNg M8 gas&ci5upper1i2J)

printfHMOnMJ)

forHi 3 4) i K m) iLLJ

printfHMNg M8 gas&ci5fit1i2J)

printfHMOnMJ)
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Quantiles of Standard Normal
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Figure &' Gaussian quantile plot of residuals with line passing through lower and
upper quartiles5

for#i % &' i ( m' i**+

printf#/0g /2 gas5ci7lower;i<+'

printf#/=n/+'

 !"#$%& '! ("# $!'#(&) $!$%%$ )!$&*%  !* (%&  !'*&($

 ! "%' )!%*"$( $!($$* $! )$&% )! ')%%  ! "%") (!$&)%#&

(!'(*&(# )!&'" " '!%)  " '!*('( &!*$"*( (!%#)&'* +(!'&'%#'

These con8dence intervals are added to the graph of the curve in Figure :'
We know from the diagnostic checking that the second local regression model

8tted to the gas data does not 8t the pattern of the data5 The increase in  for
the second 8t results in a drop in the equivalent number of parameters? but s? the
estimate of "? increases by a factor of about A5B5 This is to be expected in view of
the lack of 8t5 We will carry out a statistical comparison of the 8rst 8t? gas? and
the second? gas null? by an analysis of variance'

struct anova5struct gas5anova'

anova#@gas5null2 @gas2 @gas5anova+'
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Figure &' Gas data-local regression 2t with &&5 pointwise con2dence intervals8

printf&'(g (g (g (g*n'+ gas.anova1dfn+ gas.anova1dfd+

gas.anova1F.value+ gas.anova1Pr.F89

 !""#$ $"!%%# $&!$#'( &!&&&)%&$& 

The result: as expected: is highly signi2cant8

 ! Ethanol Data

The experiment that produced the gas data that we just analyzed was also run with
gasoline replaced by ethanol8 There were AA runs and two factors' E: as before:
and C: the compression ratio of the engine8

Exploratory Data Display

An exploratory plot useful for starting an analysis with two or more factors is the
scatterplot matrix: shown in Figure DE8 We will refer to panels in this and other
multipanel displays by column and row: numbering as we would on a graphG thus:
the lower left panel is HD:DI and the one to the right of it is HJ:DI8 The HK:KI panel of

DA



NOx

8 10 12 14 16 18

1
2

3
4

8
1
0

1
2

1
4

1
6

1
8

C

1 2 3 4 0.6 0.8 1.0 1.2

0
.6

0
.8

1
.0

1
.2

E

Figure &'( Ethanol data1scatterplot matrix of NOx: C: and E;

&<



the matrix( a scatterplot of NOx against E( shows a strong nonlinear dependence
with a peak between 789 and :878 This makes it immediately clear that we need
to use locally quadratic ?tting8 The @A(BC panel of the scatterplot matrix shows no
apparent dependence of NOx on CD however( we should not at this point draw any
?rm conclusion since it is possible that a dependence is being masked by the strong
eFect of E8 The @:(AC panel( which graphs the con?guration of points in the space
of the factors( shows that the values of the two variables are nearly uncorrelated
and that C takes on one of ?ve values8

Coplots are an essential tool in ?tting local regression models8 Figure :: is a
coplot of the ethanol data8 The dependence panels are the B B array( and the given
panel is at the top8 On each dependence panel( NOx is graphed against C for those
observations whose values of E lie in an intervalD on the panel( we are seeing how
NOx depends on C for E held ?xed to the interval8 The intervals are shown on the
given panelD as we move from left to right through these intervals( we move from
left to right and then bottom to top through the dependence panels8 The intervals
have two propertiesI approximately the same number of observations lie in each
interval and approximately the same number of observations lie in two successive
intervals8 The data analyst speci?es the number of intervals( J in Figure ::( and
the target fraction of points shared by successive intervals( :KA in Figure ::8

Figure :A is a coplot of NOx against E given C8 Since C takes on ?ve values(
we have simply conditioned on each of these ?ve values8

What do we learn from these coplotsN First( NOx does in fact depend on CD
for low values of E( NOx increases with C( and for medium and high values of E(
NOx is constant as a function of C8 Thus( there is an interaction between C and E8
Second( over the range of values of E and C in the dataset( NOx undergoes more
rapid change as a function of E for C held ?xed than as a function of C for E held
?xed8 Finally( the plots show that the amount of noiseOthat is( the variance( "!(
of the #iOis small compared with the eFect due to E( and is moderate compared
with the eFect due to C8

Modeling the Ethanol Data

It is quite clear from the exploratory plots that we must specify a locallyQquadratic
surfaceOthat is( take $ to be AObecause of the substantial curvature as a function
of E8 Also( we will specify % S 7&T for the ?rst ?tI

struct loess(struct ethanol,

long n . //0 p . 2,

double NOx89 . f:;<=>0 2;2?@0 >;=?/0 ;;;g,
double C(E89 . f>20 >20 >20 ;;;g,

loess(setupCC(E0 NOx0 n0 p0 DethanolE,

ethanol;model;span . G;@,

loessCDethanolE,

loess(summaryCDethanolE,

A7
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Number of Observations/ 00

Equivalent Number of Parameters/ 5678

Residual Standard Error/ 87<=>>

We begin a search for lack of /t by plotting the residuals against each of the
factors in the top two panels of Figure 789 Clearly there is lack of /t in the right
panel9 Thus< we drop span to 7=>?

ethanol)model)span , -)./0

loess12ethanol30

loess4summary12ethanol30

Number of Observations/ 00

Equivalent Number of Parameters/ <57?

Residual Standard Error/ 875@?5

But we must check furtherB these marginal residual plots can< of course< hide
local lack of /t in the CC!ED plane9 We check this by the coplots in Figures 7> and
7E9 There is some suspicious behavior on the C7<GD and CG<GD dependence panels of
Figure 7>B almost all of the residuals are positive9 The detected eHect is< however<
quite minor< so we will ignore it9
We can check the speci/cations of the error distribution by the same diagnostic

methods used for the gas dataJgraph
p

jK#ij against Kyi< graph
p

jK#ij against C and
E< and make a Gaussian probability plot of K#i9 This was done< and the new /t
passed the tests9

Plotting the Surface

For loess /tting with two factors< the /tted surface can also be displayed by coplots9
This is done in Figures 7M and 7N9 Let KgCC!ED be the /tted surface9 Consider a
single panel of Figure 7M9 E has been set to a speci/c conditioning value< E P E B
then KgCC!E D has been evaluated for EQ equally spaced values of C ranging from the
minimum value of C in the data to the maximum< and the surface values have been
graphed on the panel against the equally spaced values of C9 Also< TTU con/dence
intervals are drawn at seven equally spaced points from the minimum value of C
in the data to the maximum9 There are 7M equally spaced conditioning values of E
ranging from the minimum value of E in the data to the maximumB the given panel
in Figure 7M shows the 7M values9 Similarly< Figure 7N shows the dependence of the
/tted surface on E for 7M conditioning values of C9

Dropping Squares and Conditionally Parametric Surfaces

The coplot in Figure 7M show that the ethanol /t has an undesirable property?
the surface as a function of C for /xed E has unconvincing undulations< especially
in the C7<7D dependence panel9 Our skepticism comes from two sources9 First< in

G8
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the coplot of the data in Figure 001 NOx appears to be a very smooth function of
C9 in fact1 the coplot suggests that given E1 the dependence is actually linear in
C: Second1 the undulations in Figure 0< are small compared with the sizes of the
con?dence intervals:

As we saw from the diagnostic checking1 if we increase " and thereby get more
smoothness as a function of C1 we introduce lack of ?t: Instead1 we will cut back on
the variation of the ?t as a function of C by dropping C! from the ?tting variables9
this leaves us with a constant1 E1 C1 EC1 and E!: In addition1 we will specify the
surface to be conditionally parametric in C9 this will result in a ?t that is linear in
C given EC

struct loess(struct ethanol(cp-

loess(setup.C(E1 NOx1 n1 p1 5ethanol(cp6-

ethanol(cp7model7span : ;7<=-

ethanol(cp7model7parametric?;@ : TRUE-

ethanol(cp7model7drop(square?;@ : TRUE-

loess.5ethanol(cp6-

LetEs compare the old ?t and the newC

loess(summary.5ethanol6-

Number of Observations/ 00

Equivalent Number of Parameters/ 5678

Residual Standard Error/ <76=86

loess(summary.5ethanol(cp6

Number of Observations/ 00

Equivalent Number of Parameters/ 6075

Residual Standard Error/ <760<0

The equivalent number of parameters has dropped by about 0HI1 the residual
standard error has increased insigni?cantly1 and diagnostic plots1 not shown here1
indicated no lack of ?t: But the big gain is that we can now increase span to 0KL
without introducing lack of ?tC

ethanol(cp7model7span : ;7=-

loess.5ethanol(cp6-

loess(summary.5ethanol(cp6-

Number of Observations/ 00

Equivalent Number of Parameters/ >75

Residual Standard Error/ <760?5

In so doing we have driven the equivalent number of parameters to less than half
of what it was originally and kept the residual standard error about the same: The
coplots in Figures 0M and 0N show the resulting ?tted surface:

LN
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Computing the Fitted Surface and Con2dence Intervals

We turn now to a further discussion of how predict'( is used to evaluate a 1tted
surface and to compute information for con1dence intervals4 Let us evaluate our
1nal 1t to the ethanol data at the following values of the two factors7 894:; <4=>;
8?4<; <4@>; 8AB4<; A4<>; 8A:4<; <4@>; and 8A@4<; <4=>4

struct pred+struct ethanol+pred1

double newdata45 6 f789: ;8<: =>8<: =98<: =?8<: <8@:

<8?: =8<: <8?: <8@g1
long m 6 9: se+fit 6 FALSE1

int i1

predict'newdata: m: Iethanol+cp: Iethanol+pred: se+fit(1

for'i 6 <1 i J m1 iKK(

printf'LMg L: ethanol+pred8fit4i5(1

printf'LNnL(1

 !"#$%#" "!%&'$( )! **'" )!"%%%# $! *)'#

As with one factor; con1denceDinterval information can be computed at each
point of newdata by setting se6= in the loess output structure; but again we point
out that this increases the computational intensity substantially4 To get the intervals
shown in Figure A?; we de1ne a 9 x A= evaluation grid that spans C and E7

struct pred+struct ethanol+grid1

struct ci+struct ethanol+ci1

double Cmin 6 789: Cmax 6 =?8<: Emin 6 <89Q9: Emax 6 =8>Q>1

double Cm475: Em4=@5: grid4>>R51

double tmp: coverage 6 8;;1

int i: j: k1

m 6 ==>1

se+fit 6 TRUE1

tmp 6 'Cmax Y Cmin( Z @1

for'i 6 <1 i J 71 iKK(

Cm4i5 6 Cmin K tmp [ i1

tmp 6 'Emax Y Emin( Z =91

for'i 6 <1 i J =@1 iKK(

Em4i5 6 Emin K tmp [ i1

for'i 6 <1 i J =@1 iKK( f
k 6 i [ 71

for'j 6 <1 j J 71 jKK( f
grid4k K j5 6 Cm4j51

grid4m K k K j5 6 Em4i51

g
g

JB



predict'grid) m) +ethanol1cp) +ethanol1grid) se1fit45

pointwise'+ethanol1pred) m) coverage) +ethanol1ci45

 !" Air Data

We turn now to an application with three factors0 The data are from an environmen5
tal study that analyzed how the air pollutant ozone depends on three meteorological
variables: radiation; wind speed; and temperature <Bruntz et al0; >?@AB0 The data
are daily measurements of the four variables for >>> days0
For three or more factors; carrying out Dtting and inference for local regression

models is no more complicated than for two0 What gets harder; of course; is graph5
ing the data to explore and diagnose0 The coplot idea can be used for three factors
since by plotting against one factor; conditioning on two others0 Thus; for three
factors; we can make three coplots; graphing against each factor conditional on the
other two0 Figure GH shows one of the three coplots for the air data0 We have
conditioned on wind and temperature0 The dependence panels are the A A matrix
of panels0 The given panels; one for each conditioning factor; are to the right and
top0 As we move up a column of dependence panels; the intervals of wind speed
increase; and as we move from left to right across a row of dependence panels; the
intervals of temperature increase0 For example; the points on the <G;JB panel of the
coplot are observations for which the temperature measurements are in the second
interval and the wind speed measurements are in the third interval0 We omit the
two remaining coplots; but in the analysis of these data they were carefully studied0
LetLs Dt a local regression model to the data0

struct loess1struct air5

double ozone;< = f>?@@ABCD) >?>ECF>) B?BAF@>) ???g5
double rad1temp1wind;< = fCFE) CCA) C@F) ???g5
long n = CCC) p = >5

loess1setup'rad1temp1wind) ozone) n) p) +air45

air?model?span = E?A5

loess'+air45

loess1summary'+air45

Number of Observations/ 000

Equivalent Number of Parameters/ 0567

Residual Standard Error/ ;6<=>?

Diagnostic plots revealed that the speciDcations of the Dt are reasonable assump5
tions0 The Dtted surface is displayed by a coplot in in Figure G>0

 !) Galaxy Velocities

NGC@QJ> is a spiral galaxy in the Southern Hemisphere with a very bright inner
ring0 When looked at from the earth; the galaxy takes up a small area on the celestial

JJ
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sphere% Figure ** shows measurements of the radial velocity of the galaxy at 8*8
locations in this area 9Buta; <=>?@% The positions have been jittered slightly to
reduce overplotting% The horizontal scale of the graph is the eastEwest coordinate
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Figure **F Galaxy dataHlocations of velocity measurements%

and the vertical scale is the northEsouth coordinate% Note that north is up and
east is to the left because we are looking at the celestial sphere from the inside%
Each measurement lies along one of seven slits that nearly intersect at a single
point near the origin; 9L;L@% Suppose the radial positions are the signed distances
from the origin to the measurement locationsN a distance is multiplied by E< if
the eastEwest coordinate is negative and by < if it is positiveF Figure *8 graphs
against radial position for each slit% The Ogure shows that it is sensible to approach
modeling velocity dependence by a smooth function of the eastEwest and northEsouth
coordinates with random variation superimposed%

Modeling

The goal in the analysis of these data is to understand how galaxy velocity varies
over the measurement region% Thus; velocity is a response and there are two factorsF
eastEwest position and southEnorth position% In Figure *8 the curvature of the

8Q
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underlying pattern is substantial. thus we will specify a locally4quadratic surface6
Since many points appear to deviate substantially from the overall pattern compared
to the deviations of the majority of points; it seems prudent to specify symmetric
errors6 Finally; it makes sense to preserve the spatial metric of the factors and not
normalize the variation in their measurements?

struct loess(struct galaxy-

double velocity23 4 f56789 56:89 56:89 ;;;g-
double direction23 4 f=;:7>689 6;87:8=9 6;:76569 ;;;g-
long n 4 ?>?9 p 4 >-

loess(setupAdirection9 velocity9 n9 p9 BgalaxyC-

galaxy;model;span 4 E;?F-

galaxy;model;normalize 4 FALSE-

galaxy;model;family 4 NsymmetricN-

loessABgalaxyC-

loess(summaryABgalaxyC-

Number of Observations/ 010

Equivalent Number of Parameters/ 6789

Residual Scale Estimate/ 6186607

LetAs evaluate the surface on a grid and then make a contour plot?

struct pred(struct galaxy(contour-

double ew2F839 ns28839 grid2557=>3-

double tmp-

long m 4 F=:59 se(fit 4 FALSE-

int i9 j9 k-

tmp 4 R>8;E-

forAi 4 E- i S F8- iTTC

ew2i3 4 tmpTT-

tmp 4 R:8;E-

forAi 4 E- i S 88- iTTC

ns2i3 4 tmpTT-

forAi 4 E- i S 88- iTTC f
k 4 i U F8-

forAj 4 E- j S F8- jTTC f
grid2k T j3 4 ew2j3-

grid2m T k T j3 4 ns2i3-

g
g
predictAgrid9 m9 Bgalaxy9 Bgalaxy(contour9 se(fitC-

The result is shown in Figure CD6 Recall that we studied the Fts to ethanol and
air by coplots; but in this application it makes sense to use a contour plot since
we want to see the surface as a whole entityGFnding peaks; troughs; ridges; steep
terrain; and so forthGand are not interested in conditional dependence6

HI
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Diagnostic Checking

Of course( we must carry out diagnostic checking to make sure we have not plotted
nonsense in Figure 89: First( in Figure 8;( we make a coplot of the residuals(
displaying them as we did the original data: The =>(8? dependence panel shows some
clear lack of @t: At the left extreme( the distortion is as large as 9C kmDsec( which
is more than we would like: But since the fraction of observations that are aGected
is small we push on( but noting that our results are somewhat tainted: Figure 8H
is a normal probability plot of the residuals: The distribution of the residuals is
symmetric and strikingly leptokurtic: The robust estimation is clearly justi@ed( and
we should feel quite smug at having guessed correctly from the exploratory coplot:

Con-dence Intervals

Figure 89 shows that the velocity surface has a backbone of sorts: Consider the line
in the plane of the factors that goes through the origin and through the position( =>C(
LMN?( where the maximum of the surface occurs: The surface is roughly symmetric
in directions perpendicular to the line: Also( the line passes close to the minimum
of the surface: LetPs evaluate the surface at >CC equallyLspaced points along this
line and compute con@dence intervals at >; selected positionsQ

struct pred(struct spine(fit, spine(se-

struct ci(struct spine(ci-

double fit(eval34556, ci(eval3756-

double range 9 :;, coverage 9 <::-

m 9 >55-

tmp 9 range ? ::-

for@i 9 5- i A >55- iBBC f
fit(eval3i B >556 9 DE: B tmp F i-

fit(eval3i6 9 fit(eval3i B >556 ? @D7<GC-

g
predict@fit(eval, m, Hgalaxy, Hspine(fit, se(fitC-

m 9 >K-

se(fit 9 TRUE-

tmp 9 range ? >E-

for@i 9 5- i A m- iBBC f
ci(eval3i B m6 9 DE: B tmp F i-

ci(eval3i6 9 fit(eval3i B >556 ? @D7<GC-

g
predict@ci(eval, m, Hgalaxy, Hspine(se, se(fitC-

pointwise@Hspine(se, m, coverage, Hspine(ciC-

Figure 8N plots the @t against northLsouth position( and shows the RRS con@dence
intervals:

9C
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Figure &'( Galaxy data 0 Gaussian quantile plot of residuals7

 Specializing and Extending the Computations

 !" Computation

In the examples of Section &= the function predict'( did not use the loess >tting
method to compute surfaces directly at every evaluation point7 Rather= to get very
fast computation= a default algorithm was used that employs interpolation7 In this
algorithm= a set of points= typically small in number= is selected for direct computaC
tion using the loess >tting method= and a surface is evaluated using an interpolation
method that is based on blending functions7 The space of the factors is divided into
rectangular cells using an algorithm based on kCd trees7 The loess >t is evaluated at
the cell vertices= and then blending functions do the interpolation7 The output data
structure structure stores the kCd trees and the >ts at the vertices7 This information
is used by predict'( to carry out the interpolation7 Of course= the resulting interC
polated surface is not exactly the same as that of a surface computed directly= but
the agreement is typically excellent7 Even when it is not= the interpolation method
is a perfectly logical smoothing method that has a number of desirable properties7
This approach is what allows us= for example= to rapidly compute the surface of
the galaxy data at a grid of GHIJ values7 Doing a direct loess evaluation at all of
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Figure &'( Galaxy data0local regression 5t along the backbone with pointwise ;;<
con5dence intervals>

these points would be expensive> The interpolation methodA howeverA results in one
restriction( the surface cannot be evaluated outside the range of the dataC that isA
the value of each numeric variable for an evaluation point must lie within the range
of the observations of that variable in the data> This is not the case for the direct
computation methodA so evaluation can be done anywhere>

The local regression functions produce quantities that express in various ways
information about degrees of freedom> loess$% returns the equivalent number of
parametersA predict$% returns the degrees of freedom of tEintervalsA and anova$%

returns the numerator and denominator degrees of freedom of an F Etest> In the
examples of Section &A these quantitiesA which are de5ned in Section HA are computed
by an approximation method that is described in Section H> A supercomputer
environment Jor a user with a great deal of patienceK would be needed to routinely
compute these statistical quantities exactly>

Most users will not want to use direct computation of surfaces or exact compuE
tation of the statistical quantities> HoweverA those who want to explore the comE
putational and statistical methods of loess 5tting can change the computational
methods by setting the desired values in the loess struct0control structure> We
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can try this on the gas data-

struct loess(struct gas(slower,

loess(setup.E0 NOx0 n0 p0 5gas(slower6,

gas(slower7control7surface 9 :direct:,

gas(slower7control7statistics 9 :exact:,

loess.5gas(slower6, => runs slower than loess.5gas6 >=

In this example3 we have switched the computation of the surface from :interpolate:

to :direct:3 and the computation of the statistical quantities from :approximate:

to :exact:9 recall that the default values are set by loess setup.6;
The structure loess struct7control can also be used to control two other com=

putational matters; When interpolation is used3 loess struct7control7cell controls
the cell size of the k=d tree; The maximum fraction of points allowed inside a cell is
the value of this parameter times the values of "9 in the algorithm3 a cell is divided
if the maximum is exceeded; Also3 loess struct7control7iterations speciAes the
number of iterations of the loess robust estimate;

 !" Inference

We stressed in Section C that it is critical to carry out diagnostic methods to study3
among other things3 surplus and lack of At; In some applications3 however3 a clearly
identiAable lack of At might be acceptable if the identiAed magnitude of the distor=
tion is judged to be small for the purpose to which the At is put; For example3 we
might want a distorted surface if it made communication simpler and the distortion
did not interfere with the judgment of salient features; But one problem is that
an estimate3 s3 of $ based on a distorted At would be biased3 and thus a conA=
dence interval based on this estimate would not have the stated coverage; There
is a remedy; Suppose we have two loess Ats3 fit biased and fit unbiased3 the Arst
distorted and the second not; We can use the value of s from the undistorted At to
form conAdence intervals for the distorted At; We do this by changing fit biased-

fit(biased7out7s 9 fit(unbiased7out7s,

Now giving fit biased to predict.6 and pointwise.6 gives correct conAdence inter=
vals; It should be appreciated that the intervals are not for the true surface3 but
rather for the expected value of the distorted estimate;

 Statistical and Computational Methods

In this section we discuss computational and statistical methods in the Atting of
local regression models; In Section I;J3 we discuss the methods of inference that arise
from the loess Atting method; In Section I;C3 we discuss computational methods
that underlie loess Atting3 and numerical problems that can arise;
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 !" Statistical Inference

Initially' we will suppose that the errors have been speci3ed to be Gaussian and the
variances have been speci3ed to be constant6

One important property of a Gaussian:error loess estimate' ;g<x=' is that it is
linear in yi>that is'

;g<x= ?
nX

i !

li<x=yi

where the li<x= do not depend on the yi6 This linearity results in distribution
properties of the estimate that are very similar to those for classical parametric
3tting6

Suppose that the diagnostic methods have been applied and have revealed no
lack of 3t in ;g<x=D we will take this to mean that E;g<x=  g<x= is small6 Suppose
further that diagnostic checking has veri3ed the speci3cations of the error terms in
the model6

Estimation of  

Since ;g<x= is linear in yi' the 3tted value at xi can be written

;yi ?
nX

j !

lj<xi=yj %

Let L be the matrix whose <i( j=th element is lj<xi= and let

GL ? I  L

where I is the n! n identity matrix6 For k ? I and J' let

-k ? tr<GL GL=k%

We estimate . by the scale estimate

s ?

sPn
i ! ;0"i
-!

%

Con3dence Intervals for g x!

Since

;g<x= ?
nX

i !

li<x=yi(

the standard deviation of ;g<x= is

.<x= ? .

vuut nX
i !

l"i <x=%
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We estimate  'x( by

s'x( + s

vuut nX
i !

l"i 'x($

Let

% +
&"!
&"
$

The distribution of
5g'x( g'x(

s'x(

is well approximated by a t distribution with % degrees of freedom; we can use this
result to form con=dence intervals for g'x( based on 5g'x(? Notice that the value &!
by which we divide the sumAofAsquares of residuals is not the same as the value %
used for the degrees of freedom of the t distribution? For classical parametric =ttingD
these two values are equal? For loessD they are typically close but not close enough
to ignore the diEerence? We will refer to % as the look#up degrees of freedom since it
is the degrees of freedom of the distribution that we look up to get the con=dence
interval?

Analysis of Variance for Nested Models

We can use the analysis of variance to test a null local regression model against an

alternative one? Let the parameters of the null model be )#n$D *#n$D &
#n$
! D and &

#n$
" ?

Let the parameters of the alternative model be )D *D &!D and &"? For the test to
make senseD the null model should be nested in the alternative; we will de=ne this
concept shortly? Let rss be the residual sumAofAsquares of the alternative modelD
and let rss#n$ be the residual sumAofAsquares of the null model?
The test statisticD which is analogous to that for the analysis of variance in the

parametric caseD is

F +
'rss#n$  rss(-'&

#n$
!  &!(

rss-&!
$

F has a distribution that is well approximated by an F distribution with denomiA
nator lookAup degrees of freedom %D de=ned earlierD and numerator lookAup degrees
of freedom

. +
'&#n$!  &!(

"

&
#n$
"  &"

$

The concept of a null model being nested in the alternative expresses the idea
that the alternative is capable of capturing any eEect that the null can captureD but
the de=nition is more precisely a speci=cation of when it makes sense to use the
analysis of variance to compare two models? The null is nested in the alternative if
the following conditions holdG
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 $" ! n! ! !#

 %" If the square of a factor is dropped from the alternative model9 then it must
not be present in the null model; the converse need not be true#

 <" The models must have the same factors with the following exceptionA a condiB
tionally parametric factor in the alternative need not be present in the null;
if present9 though9 it must also be conditionally parametric#

Conditions  $" to  <" can be expressed in a diEerent way# To explain9 we need to
diEerentiate neighborhood variablesFthe factors used to determine the neighborB
hoods in the loess GttingFand -tting variablesFthe factors that are Gtted locally
by weighted least squares# LetIs take a speciGc example# Suppose there are three
factorsA u9 v9 and w# Suppose ! L $9 u is taken to be conditionally parametric9 and
the square of w is dropped# The neighborhood variables are v and w# The Gtting
variables are a constant9 u9 u"9 v9 v"9 w9 uv9 and vw# Now we can reexpress  $" to
 <" by the followingA

 $"
 

The null and alternative models have the same neighborhood variables#

 %"
 

The Gtting variables of the null model are a subset of the Gtting variables of
the alternative model#

The Equivalent Number of Parameters

Let
% L tr L

 

L"'

If the Nyi are the Gtted values9 then

% L

Pn
i#$ Variance Nyi"

)"
'

We will call % the equivalent number of parameters since if the Nyi were the Gtted
values for a linear model9 the right side of the last equation would be the number
of estimated parameters# % is greater than or equal to * 9 the number of Gtting
variables9 and approaches * as  tends to inGnity# The equivalent number of paB
rameters is one measure of the amount of smoothing# Strictly speaking9 % depends
on  9 on the values of the factors9 and on the choices of the neighborhood and
Gtting variables# However9 having selected all of these factors except  9 we can get9
approximately9 a desired value % by taking  to be !'$*+%9 where * is the number
of Gtting variables#
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Symmetric Errors

When the error distribution is speci.ed to be symmetric1 inferences are based on
pseudo&values4 Let the robustness weights and the median absolute residual used in
the .nal update of the .t1 9g:x;1 be ri andm1 respectively1 and let $:u= b; > uB:u= b;4
The pseudo@values are

Ayi > 9yi B cri9*i

where 9yi are the .tted values1 9*i are the residuals1 and

c >
nPn

i ! $
 :9*i= Cm;

,

Inferences are carried out by applying the inference procedures of the Gaussian
case but replacing the observations of the response yi by the pseudo@values Ayi4 For
example1 suppose we want to compute a con.dence interval for g:x; about the robust
estimate1 9g:x;4 Using the pseudo@values as the response1 we compute a Gaussian@
error estimate1 -1 and s:x; as described above4 The con.dence interval for g:x; is
the 9g:x; plus and minus s:x; times a t value with - degrees of freedom4 The true
coverage using this procedure is well approximated by the nominal coverage4 For
the analysis of variance1 we proceed in a similar fashion using the pseudo@values
from the alternative model and carrying out the Gaussian@error procedures4 For
small samples1 the approximation is not as good as for con.dence intervals and
produces optimistic results1 but work is under way to .nd methods for adjusting
degrees of freedom that will improve the approximations4

Errors with Unequal Scales

Suppose we have speci.ed that the random errors *i in the model have the property
that ai*i are identically distributed where the a priori weights1 ai1 are positive and
known4 Then various modi.cations are made to the methods of inference4
For the Gaussian@error estimate1 the operator matrix L is1 of course1 diLerent

from that in the equal@variance case1 but 2! and 2" are de.ned in terms of L as
before4 The estimate of 3 becomes

s >

sPn
i ! ai9*

"
i

2!

and the estimate of the standard deviation of 9g:x; becomes

s:x; > s

vuut nX
i !

l"i :x;5ai,

For the analysis of variance1 all residual sum@of@squares are modi.ed by adding the
terms ai1 as done above for s4
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For the robust estimate, the median absolute residual is de0ned using the stan$

dardized residuals

2  i 3
p
ai2 i

That is,
m 3 median5j2  i j6#

Similarly, the robustness weights are

ri 3 B m52 
 

i 6#

The pseudo;values are
=yi 3 2yi > cri2 i

where c is now
c 3

nPn
i!")

!52  i ? @m6
#

 !" Computational Methods

Interpolation by k6d Trees and Blending

The k;d tree is a particular data structure for partitioning space by recursively cut;
ting cells in half by a hyperplane orthogonal to one of the coordinate axes 5Bentley,
EFGH6I For our application, the k in the name refers to the number of neighborhood
variables, those factors that are used to de0ne the neighborhoodsI

Here is how the k;d tree is formedI Start with a rectangular cell just contain;
ing the values of the neighborhood variablesI Pick the factor whose spread is the
greatest and divide the cell in half at the median along the axis of that factorI Re;
cursively apply the same division procedure to each subcellI If a cell contains fewer
than ,n points, where , is a small fraction, do not re0ne itI Figure PQ shows a k;d
tree for two factors, n 3 HRR, and , 3 R#RHI

Once the k;d tree is built, 2g5x6 is directly computed at the verticesI By Tvertex,U
we just mean a corner of a cell? TvertexU seems a better term than TcornerU because a
vertex of one cell typically lies in the middle of a side of an adjacent cellI In addition
to computing 2g5x6 at a vertex, a derivative of 2g at the vertex is approximated by
the derivative of the locally;0tted surfaceI This derivative is a natural by;product
of the least;squares computation and costs nothing extra to obtainI

Typically, the number of vertices, v, will be much smaller than nI This is at
least true asymptotically, because the number of cells needed to achieve a certain
accuracy of approximation depends on the smoothness of 2g5x6, not nI In Figure PQ
there are @@ vertices, so we solve @@ least;squares problems instead of one problem
per evaluation of 2g5x6I 5Recall that for the galaxy surface we carried out HQWE
evaluations to make a contour plotI6 The amount of work in general to construct
the k;d tree, including vertex coeXcients, is O5v55E#H>12 6n> 2#66I After building
the tree, each interpolation costs O5log v6I Since 2 is 0xed and v is asymptotically
bounded, the total running time is linear in the size of the input and outputI
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Let#s turn now to the scheme used to build a piecewise polynomial approximation
to 5g6 To simplify the discussion9 we will suppose that there are two neighborhood
variables6 For our k=d tree9 the boundary of each rectangular cell is cut into segments
by vertices6 >There are four sides9 some of which will likely contain internal vertices9
breaking them into more segments6@ On each segment9 the surface is interpolated
using the unique cubic polynomial determined by the Ctted function and derivative
values at the vertices6 To interpolate in the interior of the cell9 we apply blending
functions9 also known as transCnite interpolants >Cavendish9 EFGH@6 This technique9
well known in computer=aided design9 takes a certain combination of univariate
interpolants in each variable separately to build a surface6 In eJect9 each cell is
subdivided and on each piece a cubic polynomial in two variables is constructed
although the computation is not actually done this way6

For one and two neighborhood variables9 the interpolation function is C 9 but
for more variables9 the present code does not use enough vertices to guarantee a
consistent approximation across cell facets6 Hence the overall approximation may
not be C or even C!6 This defect will be removed in a future implementation6

Computing  i

Three statistical quantities are described in Section M6E that provide information
about degrees of freedomN$9 %9 and &6 These three quantities are functions of ' 9
'"9 and n6 Straightforward computation of the 'i is horrendously expensive9 so we
have developed methods of approximation6 First9 we generated a large number of
datasets9 each with a response and one or more factors9 and computed the 'i for
each6 We discovered9 through substantial graphical analysis9 that the 'i could be
predicted to within a few percent by the following factorsP )9 n9 * 9 and

+ Q

p
*, tr>L@ p*,n

E p*,n
.

The model that was Ctted is semiparametric9 involving both parametric functions
and a local regression model6

Error Messages from the Bowels of Loess

Although loess Ctting is based on sound numerical methods9 some delicate situations
can arise that require the judgment of the user6 When problems are detected by
the loess routines9 messages are transmitted up to the user6

One class of messages involves the smoothing parameter /6 In order for the
least=squares problem in a direct computation of 5g>x@ to be well posed9 / must
be large enough that there are as many data points in the neighborhood as Ctting
variables9 * 9 in the local regression6 Moreover9 since neighborhood weights drop to U
at the boundary9 at least * of these points must be strictly inside the neighborhood6
If / is too small9 the Cx is to increase it or reduce * by lowering ) or dropping
squares6

HE



The sample points must be su.ciently well distributed as well as su.ciently
numerous4 For example7 consider locally quadratic 9tting in one factor4 If7 because
of multiplicities7 there are only two distinct sample locations inside a neighborhood7
then a quadratic polynomial is not uniquely determined4

When numerical problems arise because of poor conditioning of the design ma>
trix of the local regression7 small eigenvalues are set to zero and a pseudo>inverse
message is sent4 None of this means the 9t has a problem7 but a pseudo>inverse
message is a caution that extra alertness must be used in examining the diagnostic
displays4

Mathematically7 trCL is greater than or equal to ! . the number of 2tting vari4
ables5 Numerically. however. if eigenvalues are set to zero. tr;L can drop below ! .
which causes the method of computing "i approximately to abort5 If this indicator
of an eigenvalue meltdown occurs. the coded message @ChernobylB is raised5

Finally. when the interpolation method is used. the code must allocate space
based on a prediction from the number of observations. the number of factors. and
the speci2cation of the surface and errors5 If this allocated space is too small. the
k4d tree division is truncated and a warning message sent up5 In some cases the
problem is extreme enough that the 2t is not carried outD this necessitates increasing
the value of %5

 Bibliographic Notes

Local regression models are treated in detail in a new book by Cleveland and Grosse
;forthcoming 5 But methods of local 2tting date back at least to the IJKLs5 Initial
applications were to smooth a time series ;Macauley. IJNI 5 An early use of local
2tting for the general regression problem was investigated by Watson ;IJQR 5 The
method amounted to 2tting a constant locallyTin other words. taking the polyno4
mial degree & to be zero5 This came to be known as kernel smoothing5 It leads to
very interesting theoretical work but is not of use in practice since it is hard to coax
the method into following the patterns in most datasets5 More serious attempts at
local 2tting were suggested by McLain ;IJUR . who 2tted quadratic polynomials.
and Stone ;IJUU . who 2tted linear polynomials5 The method of 2tting used here
was described by Cleveland ;IJUJ for one factor5 Cleveland and Devlin ;IJXX ex4
tended the method to two or more factors and investigated the sampling properties
in the Gaussian case5 ;Sampling properties in the symmetric case are still under
development5 The computational methods described in Sections N and R. which
are crucial to local regression being useful in practice. are described in full detail
by Cleveland. Devlin. and Grosse ;IJXU and Cleveland and Grosse ;IJJI 5
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Appendix' Obtaining the Loess Routines Electron7

ically

The C and Fortran routines. all of which are freely available. may be obtained by
sending electronic mail to

netlib&research,att,com

a mailbox at AT:T Bell Laboratories in Murray Hill. NJA The message

send dloess from a

should be sentA The routines are double precsionA
The Cle dloess is a soDcalled Eshell archiveF or EbundleFA Moreover. in order

to send this GHI kilobyte Cle to you by email. netlib breaks it into pieces which are
themselves shell archivesA So youLll need to run sh once on each piece of mail to
reconstruct the Cle dloess. then run sh dloess to Cnally reconstruct all the source
ClesA

Subroutines from linpack. which are called by the Fortan code. are not includedA
If they are not already on your system. send the message

send d1mach dnrm2 dsvdc dqrdc ddot dqrsl idamax from linpack core

to the same addressA When installing. donLt forget to uncomment the appropriate
DATA statements in dGmach. as described by the comments in those functionsA

The PostScript Cle for this user manual is also available by email

send cloess,ps from a

but since it is over half a megabyte. ftp is a better choice

ftp research,att,com

login9 netlib

password9 ;your email address>

binary

cd a

get cloess,ps,Z

quit

uncompress cloess,ps

Bug reports will receive prompt attentionA Send electronic mail to

shyu&research,att,com

or send paper mail to

MingAJen Shyu

ATFT Bell Laboratories

IJJ Mountain AvenueK room 2CA2IM

Murray Hill NJ JPQPR

USA
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